
Competitive Games: Playing
Fair with Tanks

Combat arenas are a popular theme in multiplayer games, because they create extremely
compelling gameplay from very simple ingredients. This can often just be an environment
filled with weapons that the players can use to wipe each other out. The game that we’re going
to create in this chapter is exactly that, with futuristic battle tanks. Although games like this
are relatively easy to make, care must be taken in their design to ensure that both players feel
they are being treated fairly. We’ll discuss this more in Chapter 11.

This game will also introduce views in Game Maker to help create a larger combat arena.
We will also use views to create a split-screen mode, where each player can only see the part of
the arena around their own tank.

Designing the Game: Tank War
We’re calling this game Tank War for obvious reasons. Both players pilot a tank within a large
battle arena and the winner is the last one standing. Here’s a more detailed description of the
game:

Tank War is a futuristic tank combat game for two players. Each player drives his or her
own tank through the walled battle arena with the aim of obliterating the other’s tank. Once a
tank is destroyed, both tanks are respawned at their start position, and a point is awarded to the
surviving player. Most walls provide permanent cover, but some can be temporarily demolished
to create a way through. There is no ultimate goal to the game, and players simply play until one
player concedes defeat.

Each tank has a primary weapon that it can fire indefinitely. Pickups provide a limited
amount of ammunition for a secondary weapon, or repair some of the tank’s damage:

• Homing rockets: Always move in the direction of your opponent

• Bouncing bombs: Bounce against walls, and can be used to fire around corners

• Shields: Are activated to provide a temporary protective shield

• Toolbox: Repairs part of the tank’s damage

191

C H A P T E R 1 0

The game uses a split-screen view divided in two parts (see Figure 10-1). The left part is
centered on player one’s tank and the right part is centered on player two’s tank. There is also
a mini-map at the bottom of the screen for locating pickups and the other player.

Player one will move their tank with the A, D, W, and S keys and fire with the spacebar
(primary) and Ctrl key (secondary). Player two will control their tank with the arrow keys, and
fire with the Enter key (primary) and Delete key (secondary).

Figure 10-1. Tank War has a split-screen with a little mini-map at the bottom.

All resources for this game have already been created for you in the Resources/Chapter10
folder on the CD.

Playing with Tanks
Our first task is to create the battle arena. This will be a simple environment with two types of
walls that will stop tanks and their shells. The first type of wall will be permanent, whereas the
second type can be demolished by tank fire but will reappear again after a while.

Creating the arena background and walls:

1. Launch Game Maker and start a new empty game.

2. Create a background resource called background using Background.bmp from the
Resources/Chapter10 folder on the CD.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS192

3. Create two sprites called spr_wall1 and spr_wall2 using Wall1.gif and Wall2.gif.
Disable the Transparent property for both sprites.

4. Create a new object called obj_wall1 and give it the first wall sprite. Enable the Solid
property and close the object properties. No further behavior is needed.

5. Create a new object called obj_wall2 and give it the second wall sprite. Enable the
Solid property and set Parent to obj_wall1.

Like most of the previous games, this game will have a controller object. For the time
being, this will only play the background music but later it will also be responsible for display-
ing the score.

Creating the controller object and the room:

1. Create a sound resource called snd_music using Music.mp3 from the
Resources/Chapter10 folder on the CD.

2. Create a new object called obj_controller, with no sprite. Set Depth to -100 to make
sure that the drawing actions we will give it later on are drawn in front of other objects.
Add an Other, Game Start event and include the Play Sound action. Set Sound to
snd_music and set Loop to true.

3. Create a new room and switch to the settings tab. Call the room room_main and give it
an appropriate caption.

4. Switch to the backgrounds tab and select the background you created earlier.

5. Switch to the objects tab. In the toolbar, set Snap X and Snap Y to 32, as this is the size
of the wall objects.

6. Create a continuous wall of obj_wall1 objects around the edge of the room. Also add
walls of both types to the interior so that they create obstacles for the tanks (remember
that you can hold the Shift key to add multiple instances of an object).

7. Add one instance of the controller object into the room.

Now we’ll create our tanks. We’ll need different tank objects for each of the two players,
but most of their behavior will be identical so we’ll create a parent tank object that contains
all the common events and actions. In this game we’re going to control the tank instances by
directly changing their local direction and speed variables. Remember that the direction
variable indicates the direction of movement in degrees (0–360 anticlockwise; 0 is horizontally
to the right). The speed variable indicates the speed of movement in this direction, so a nega-
tive value represents a backward movement.

Creating the parent tank object:

1. Create a new object called obj_tank_parent, with no sprite.

2. Add a Create event and include a Set Friction action with Friction set to 0.5. This will
cause the tanks to naturally slow down and come to rest when the player is not press-
ing the acceleration key.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 193

3. Add a Collision event with obj_wall1 and include a Set Variable action. Set Variable to
speed and Value to -speed. This will reverse the tank’s movement direction when it col-
lides with a wall.

4. Likewise, add a Collision event with obj_tank_parent and include a Set Variable
action. Set Variable to speed and Value to -speed (you could also right-click on the
previous collision event and select Duplicate Event to achieve this).

Creating the two players’ tank objects:

1. Create two sprites called spr_tank1 and spr_tank2 using Tank1.gif and Tank2.gif. Set
the Origin of both sprites to Center. Note that these sprites have 60 subimages corre-
sponding to different facing directions for the tanks.

2. Create a new object called obj_tank1 and give it the first tank sprite. Set Parent to
obj_tank_parent and enable the Solid option. Set Depth to -5 to make sure it appears
in front of other objects, such as shells, later on.

3. Add a Keyboard, Letters, A event and include a Set Variable action. Set Variable to
direction and Value to 6, and enable the Relative option. This will rotate the tank
anticlockwise.

4. Add a Keyboard, Letters, D event and include a Set Variable action. Set Variable to
direction and Value to -6, and enable the Relative option. This will rotate the tank
clockwise.

5. Add a Keyboard, Letters, W event and include a Test Variable action. Set Variable to
speed, Value to 8, and Operation to smaller than. Include a Set Variable action, setting
Variable to speed and Value to 1 and enabling the Relative option. This will then only
increase the speed if it is smaller than 8.

6. Add a Keyboard, Letters, S event and include a Test Variable action. Set Variable to
speed, Value to -8, and Operation to larger than. Include a Set Variable action, setting
Variable to speed and Value to -1 and enabling the Relative option. This will only
reduce the speed (reverse) if the speed is greater than -8 (full speed backward).

7. Add a Step, End Step event. In this event we must set the subimage of the sprite that
corresponds to the direction the tank is facing. Include the Change Sprite action, set-
ting Sprite to spr_tank1, Subimage to direction/6 and Speed to 0. As in Galactic Mail,
direction/6 converts the angle the object is facing (between 0 and 360) to the range of
images in the sprite (between 0 and 60).

8. We will draw the tank ourselves because later we want to draw more than just the
sprite. Add a Draw event. Include the Draw Sprite action, setting Sprite to spr_tank1
and Subimage to -1 and enabling the Relative option.

9. Repeat steps 2–8 (or duplicate obj_tank1 and edit it) to create obj_tank2. This time you
should use the arrow key events to control its movement (Keyboard, Left, etc.)

10. Reopen the room and put one instance of each tank into it.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS194

Now test the game to make sure everything is working correctly. In case something is
wrong, you’ll find a version of the game so far in the file Games/Chapter10/tank1.gm6 on
the CD.

Firing Shells
Now the fun begins. In this section we’ll create shells for the tanks to shoot at each other, but
first we need a mechanism to record the tank’s damage and scores. As in Chapter 9, we’ll give
each tank a variable called damage to record the amount of damage it has taken. It will start
with a value of 0, and once it reaches 100 the tank is destroyed. We’ll also use two global vari-
ables called global.score1 and global.score2 to record how many kills each tank has made.
The controller object will initialize these variables and display their values.

Recording the player’s score in the controller object:

1. Create a font called fnt_score and select a font like Arial with a Size of 48 and the Bold
option enabled. We only need to use the numerical digits for the score, so you can click
the Digits button to leave out the other characters in the font. This will save storage
space and reduce the size of your .gm6 and executable game files.

2. Reopen the controller object and select the Game Start event. Include a Set Variable
action with Variable set to global.score1 and Value set to 0. Include another Set Vari-
able action with Variable set to global.score2 and Value also set to 0. This creates and
initializes the global score variables that will store the player’s score.

3. Add a Draw event and include a Set Font action. Set Font to fnt_score and Align to
right. Include a Set Color action and choose a dark red color.

4. Include a Draw Variable action from the control tab. Set Variable to global.score1, X
to 300, and Y to 10.

5. Include another Set Font action with Font set to fnt_score, but this time set Align to
left. Include a Set Color action and choose a dark blue color.

6. Include a Draw Variable action with Variable set to global.score2, X set to 340, and Y
set to 10.

If you run the game now, you should begin with a large 0–0 score displayed on the screen.
Next we’re going to create two explosions: a large one for when a tank is destroyed, and a small
one for when a shell hits something.

Creating the large explosion object:

1. Create a sprite called spr_explosion_large using Explosion_large.gif and Center the
Origin.

2. Create a sound called snd_explosion_large using Explosion_large.wav.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 195

3. Create a new object called obj_explosion_large. Give it the large explosion sprite and
set Depth to -10. Add a Create event and include a Play Sound action, with Sound set
to snd_explosion_large and Loop set to false.

4. Add an Other, Animation End event and include the Restart Room action.

Creating the small explosion object:

1. Create a sprite called spr_explosion_small using Explosion_small.gif and Center the
Origin.

2. Create a sound called snd_explosion_small using the file Explosion_small.wav.

3. Create an object called obj_explosion_small. Give it the small explosion sprite and set
Depth to -10. Add a Create event and include the Play Sound action, with Sound set to
snd_explosion_small and Loop set to false.

4. Add the Other, Animation End event and include the Destroy Instance action.

Explosions in hand, we’re now ready to create the damage mechanism. The parent tank
object will be responsible for initializing the damage variable, checking the damage, and draw-
ing the tank’s health bar on the screen. It will also be responsible for blowing up the tank when
its damage reaches 100, which is why we needed the explosion objects first.

This is all pretty straightforward, and putting this code in the parent tank object will save
us some time. However, when the tank blows up we also need to increase the correct player’s
score—so how do we know which player’s tank has died if we are working with the parent
object? Fortunately, every instance has a variable called object_index that records a number
corresponding to the type of object it is. Every object has its own unique number, which can
be accessed by using the object name as if it was a variable (in this case obj_tank1 and
obj_tank2). So by comparing object_index and obj_tank1 we can tell if the instance is an
instance of player one’s tank or an instance of player two’s.

We’ll check the tank’s damage in the Step event of the parent tank object and increase the
appropriate score if it is larger than 100. Then we’ll create a large explosion and destroy the
tank. The large explosion object will automatically restart the room once the animation is
finished.

Adding a damage mechanism to the parent tank object:

1. Reopen obj_tank_parent and select the Create event. Include a Set Variable action
with Variable set to damage and Value set to 0.

2. Add a Step, Step event and include a Test Variable action. Set Variable to damage, Value
to 100, and Operation to smaller than. Include an Exit Event action so that no further
actions are executed if the damage is smaller than 100.

3. Now we need to find out what type of tank we are dealing with. Include a Test Variable
action with Variable set to object_index, Value set to obj_tank1, and Operation set to
equal to. Include a Set Variable action with Variable set to global.score2, Value set
to 1, and the Relative option enabled. This will then increase player two’s score if this
instance is player one’s tank.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS196

4. Include an Else action followed by a Set Variable action. Set Variable to global.score1
and Value to 1, and enable the Relative option. This will increase player one’s score if
this instance is player two’s tank.

5. Include a Create Instance action with Object set to obj_explosion_large and the
Relative option enabled.

6. Finally, include a Destroy Instance action.

Obviously, we need to draw some kind of health bar so that the players can see how well
they are doing. It would be easiest to use the Draw event of the parent tank object to do this,
but there is a problem. The two tank objects already have their own Draw events so they won’t
normally execute the Draw event of the parent object because their own takes priority. Fortu-
nately, we can use the Call Parent Event action in the two tanks’ own Draw events to make
sure that the parent’s Draw event is called as well.

Adding a draw event to the parent tank object to draw the health bars:

1. Add a Draw event for the parent tank object.

2. Include a Set Health action (score tab) and set Value to 100-damage. Damage is the
opposite concept to health, so subtracting it from 100 makes this conversion (e.g.,
80 percent damage converts to 100 – 80 = 20 percent health).

3. Add a Draw Health action. Set X1 to -20, Y1 to -35, X2 to 20, and Y2 to -30. Enable the
Relative option, but leave the other parameters as they are. This will draw a small
health bar above the tank. It may seem strange to be using the health functions here
as they only work with one health value and we have two players. However, this tech-
nique works because we set the health in step 2 using the instance’s own damage
variable, just before we draw the health bar.

4. Reopen obj_tank1 and select the Draw event. Include the Call Parent Event action
(control tab) at the end of the list of actions for this event. This will make sure that the
Draw event of the parent tank object is also executed.

5. Reopen obj_tank2 and select the Draw event. Include the Call Parent Event action
(control tab) at the end of the list of actions for this event.

With the damage and scoring mechanism in place, we can now create the tank shells. We
only want the player’s shells to damage their opponent’s tank, so we will create a separate shell
object for each tank and put common behavior in a shell parent object. We’ll also use an alarm
clock to give shells a limited life span (and therefore a limited range). Alarm clocks will also
help us to temporarily demolish the second wall type when they are hit by shells. We’ll move
the walls outside the room and use an alarm event to bring them back to their original posi-
tion after a period of time.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 197

Creating the parent shell object:

1. Create a sprite called spr_shell using Shell.gif and Center the Origin. Note that
like the tank sprite, this contains 60 images showing the shell pointing in different
directions.

2. Create a new object called obj_shell_parent and leave it without a sprite (you can set
it, but it isn’t necessary for the parent as it never appears in the game).

3. Add a Create event and include the Set Alarm action. Set the Number of Steps to 30
and select Alarm 0.

4. Add an Alarm, Alarm 0 event and include the Destroy Instance action.

5. Add a Step, End Step event and include the Change Sprite action. Set Sprite to
spr_shell, Subimage to direction/6, and Speed to 0 (to stop it from animating).

6. Add a Collision event with obj_wall1 and include a Create Instance action. Set Object
to obj_explosion_small and enable the Relative option. Also include a Destroy
Instance action to destroy the shell.

7. Add a Collision event with obj_wall2. This object must be temporarily removed.
Include a Create Instance action with Object set to obj_explosion_small and the
Relative option enabled. Include a Jump to Position action with X and Y set to 100000.
Also select the Other object for Applies to so that the wall is moved rather than the
shell.

8. Include a Set Alarm action and select the Other object for Applies to so that it sets an
alarm for the wall. Select Alarm 0 and set Number of Steps to 300. Finally, include a
Destroy Instance action to destroy the shell.

9. Add a Collision event with obj_shell_parent and include a Create Instance action. Set
Object to obj_explosion_small and enable the Relative option. Also include a Destroy
Instance action to destroy the shell.

We now need to make sure that any removed obj_wall2 instances are returned to their
original position when the alarm clock runs out. We will also need to check that the original
position is empty first, as we did for the locks in Koalabr8.

Editing the destructible wall object to make it reappear:

1. Reopen the obj_wall2 object and add an Alarm, Alarm 0 event. Include a Check
Empty action with X set to xstart, Y set to ystart, and Objects set to All. Include a
Jump to Start action.

2. Next include an Else action followed by a Set Alarm action. Select Alarm 0 and set
Number of Steps to 5. That way, when the position is not empty it will wait five more
steps and then try again.

We can now create the actual shell objects.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS198

Creating the players’ shell objects:

1. Create a new object called obj_shell1. Give it the shell sprite and set its Parent to
obj_shell_parent.

2. Add a Collision event with obj_tank2 and include a Set Variable action. Set Variable to
damage and Value to 10, and enable the Relative option. Also select the Other object for
Applies to so that the tank’s damage variable is changed.

3. Include a Create Instance action with Object set to obj_explosion_small and enable
the Relative option. Also include a Destroy Instance action to destroy the shell.

4. Repeat steps 1–3 to create obj_shell2 using a Collision event with obj_tank1 rather
than obj_tank2.

Finally, we’ll add the actions to make the tanks fire shells. Player one’s tanks will shoot
shells of type obj_shell1 when the spacebar is pressed, and player two’s tank will shoot shells
of type obj_shell2 when the Enter key is pressed. As in the Wingman Sam game, we’ll limit the
speed with which the player can fire shells using a can_shoot variable. To create bullets that
face in the same direction as the tank, we will use the Create Moving action and pass in the
tank’s own direction variable.

Adding events to make the tank objects fire shells:

1. Reopen the parent tank object and select the Create event. Include a Set Variable
action with Variable set to can_shoot and Value set to 0.

2. Select the Step event and include a Set Variable action at the beginning of the list of
actions. Set Variable to can_shoot and Value to 1, and enable the Relative option.

3. Reopen obj_tank1 and add a Key Press, <Space> event. Include the Test Variable
action, with Variable set to can_shoot, Value set to 0, and Operation set to smaller
than. Next include the Exit Event action so that the remaining actions are only
executed when can_shoot is larger or equal to 0.

4. Include a Create Moving action. Set Object to obj_shell1, Speed to 16, and Direction
to direction, and enable the Relative option. Also include a Set Variable action with
Variable set to can_shoot and Value set to -10.

5. Repeat steps 3–4 for the obj_tank2, this time using a Key Press, <Enter> event for the
key and obj_shell2 for the Create Moving action.

That completes the shells. Test the game carefully and check yours against the one in the
file Games/Chapter10/tank2.gm6 on the CD if you have any problems.

Secondary Weapons
We’re going to include secondary weapons and pickups to increase the appeal of the game.
Pickups will appear randomly in the battle arena and can be collected by driving into them.
Each tank can only have one secondary weapon active at once, so picking up a new weapon

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 199

will remove the current one. Toolboxes can also be collected to repair some of the tank’s dam-
age, but these will remove any secondary weapons too. All the secondary weapons will have
limited ammunition, so the players must take care to make the most of them.

We’ll use just one object for all these different kinds of pickups and change its appearance
depending on the type of pickup. We’ll use a variable called kind to record what sort of pickup
it is by setting its value to 0, 1, 2, or 3. The value 0 will stand for the homing rocket, 1 for the
bouncing bomb, 2 for the shield, and 3 for the toolbox. We can then choose a pickup type at
random by using the choose() function. To make things more interesting, the pickup will
change its kind from time to time and jump to a new position. It will also jump to a new posi-
tion when it is collected by a tank.

Creating the pickup object:

1. Create a sprite called spr_pickup using Pickup.gif. Note that it consists of four com-
pletely different subimages, representing each different kind of pickup.

2. Create a new object called obj_pickup and give it the pickup sprite.

3. Add a Create event and include the Set Variable action. Set Variable to kind and Value
to choose(0,1,2,3). This will choose randomly between the numbers in brackets that
are separated by commas.

4. Include the Set Alarm action for Alarm 0 and set Number of Steps to 100+random(500).
This will give a random time between 100 and 600 steps or about 3 and 20 seconds.
Finally, include a Jump to Random action with the default parameters. This will move
the instance to a random empty position.

5. Add an Alarm, Alarm 0 event and include the Set Variable action. Set Variable to kind
and Value to choose(0,1,2,3).

6. Include the Set Alarm action for Alarm 0 with Number of Steps set to
100+random(500). Finally, include a Jump to Random action.

7. Add a Collision event with obj_tank_parent and include a Jump to Random action.

8. Add a Draw event and include the Draw Sprite action. Set Sprite to spr_pickup,
Subimage to kind and enable the Relative option.

Now reopen the room and add a few instances of the pickup object to it. Test the game to
make sure that the pickups have different images and that they change their type and position
from time to time. Also check out what happens when you drive over one with your tank.

We’ll also need to record the kind of pickup that has been collected by the tank so that it
can change its secondary weapon. We’ll use the variable weapon for this, where a value of -1
corresponds to no weapon. The variable ammunition will indicate how many shots the tank has
left of this weapon type. Once ammunition reaches 0, weapon will be set to -1 to disable the sec-
ondary weapon from then on. We’ll check the value of the pickup object’s kind variable in the
collision event, and use it to set the tank’s weapon accordingly.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS200

Editing the parent tank object to record pickups:

1. Reopen obj_tank_parent and select the Create event.

2. Include a Set Variable action with Variable set to weapon and Value set to -1. Include a
second Set Variable action with Variable set to ammunition and Value set to 0.

3. Add a Collision event with obj_pickup and include a Test Variable action. Set Variable
to other.kind, Value to 3, and Operation to equal to. A value of 3 corresponds to the
toolbox. This needs to repair the tank’s damage, so include a Start Block action to
begin the block of actions that do this.

4. Include a Set Variable action with Variable set to weapon and Value set to -1.
Include a second Set Variable action with Variable set to damage and Value set to
max(0,damage-50). The function max decides which is the largest of the two values you
give it (more about functions in Chapter 12). Therefore, this sets the new damage to
the largest out of damage-50 and 0. In effect, this subtracts 50 from damage but makes
sure it does not become smaller than 0. Include an End Block action.

5. Include an Else action, followed by a Start Block action to group the actions that are
used if this is not a toolbox pickup.

6. Include a Set Variable action with Variable set to weapon and Value set to other.kind.
Include another Set Variable action with Variable set to ammunition and Value set
to 10.

7. Finally, include an End Block action.

Obviously, it will help players to be able to see the type of secondary weapon they’ve col-
lected and the ammunition they have remaining for it. We’ll display this below each tank using
a small image of the pickup. These images have been combined into one sprite again, so we’ll
need to test the value of weapon and draw the corresponding subimage if it is equal to 0, 1, or 2.
We can then also draw the value of the variable ammunition next to it.

Displaying the secondary weapon in the parent tank object:

1. Create a new sprite called spr_weapon using Weapon.gif. Note that it consists of three
subimages (no image is required for the toolbox).

2. Create a font called fnt_ammunition and keep the default settings for it.

3. Select the Draw event in obj_tank_parent and include a Test Variable action. Set
Variable to weapon, Value to -1, and Operation to larger than. This will ensure that we
only draw something when there is a secondary weapon. Include a Start Block action
to group the drawing actions.

4. Include the Draw Sprite action and select spr_weapon. Set X to -20, Y to 25, and
Subimage to weapon. Also enable the Relative option.

5. Include a Set Color action and choose black. Then include a Set Font action, selecting
fnt_ammunition and setting Align to left.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 201

6. Next include a Draw Variable action with Variable set to ammunition, X set to 0, Y set to
24, and the Relative option enabled.

7. Finally, include an End Block action to conclude the actions that draw the weapon
information.

Test the game to check that the weapon icons are displayed correctly when you collect
the different weapon pickups. However, so far only the repair kit actually does anything
for the player, so let’s start by sorting out the rocket. It will behave in much the same way as
the shell but automatically starts moving in the direction of the enemy tank. We’ll use the
same structure of objects as we did for the shell, with common behavior contained in a parent
rocket object (obj_rocket_parent) and separate rocket objects that home in on the different
tanks (obj_rocket1 and obj_rocket2). We’ll also make obj_shell_parent the parent of
obj_rocket_parent so that it inherits obj_shell_parent’s Collision and Alarm events. How-
ever, we don’t want obj_rocket_parent to have the same Create and End Step events as
obj_shell_parent so we’ll give it new versions of these events that give the rocket a longer
lifetime and draw the correct sprite.

Creating the parent rocket object:

1. Create a sprite called spr_rocket using Rocket.gif and Center the Origin.

2. Create a new object called obj_rocket_parent and set Parent to obj_shell_parent.

3. Add a Create event and include the Set Alarm action. Set Number of Steps to 60 and
select Alarm 0.

4. Add a Step, End Step event and include a Change Sprite action. Select the rocket
sprite, then set Subimage to direction/6 and Speed to 0.

Next we create the two actual rocket objects.

Creating the actual rocket objects:

1. Create a new object called it obj_rocket1 and give it the rocket sprite. Set Parent to
obj_rocket_parent.

2. Add a Create event and include the Move Towards action. Set X to obj_tank2.x, Y to
obj_tank2.y, and Speed to 8.

3. Add a Collision event with obj_tank2 and include a Set Variable action. Select Other
from Applies to (the tank), set Variable to damage and Value to 10, and enable the
Relative option.

4. Include a Create Instance action, selecting obj_explosion_small and enabling the
Relative option. Also include a Destroy Instance action.

5. Create obj_rocket2 in the same way, but move toward obj_tank1 in the Create event,
and add a Collision event with obj_tank1 for the actions in steps 3 and 4.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS202

Finally, we need to make it possible for the tanks to fire rockets. We’ll check whether they
have the weapon and ammo in the Key Press event of the sceondary fire key. If they do, then
we’ll create the rocket and decrease the ammunition. When it reaches 0, we’ll set weapon to –1
to disable it.

Adding events to shoot rockets for the tank object:

1. Reopen the first tank object and add a Key Press, <Ctrl> event. Include a Test Variable
action, with Variable set to can_shoot, Value set to 0, and Operation set to smaller
than. Next include the Exit Event action so that the remaining actions are only exe-
cuted when can_shoot is larger than or equal to 0.

2. Include the Test Variable action, with Variable set to weapon, Value set to 0, and Opera-
tion set to equal to. Next include a Test Instance Count action with Object set to
obj_tank2, Number set to 0 and Operation set to larger than. Follow this with a Create
Instance action for obj_rocket1, and enable the Relative option. This creates a rocket
only when it is the current secondary weapon and the other tank exists (this avoids a
rare error when the other tank has just been destroyed).

3. Next we need to decrease the ammunition. Include a Set Variable action with Variable
set to ammunition, Value set to –1, and the Relative option enabled. Include a Test
Variable action with Variable set to ammunition, Value set to 1, and Operation set to
smaller than. Follow this with a Set Variable action with Variable set to weapon and
Value set to -1.

4. Finally, include a Set Variable action with Variable set to can_shoot and Value set
to -10.

5. Repeat steps 1–4 for obj_tank2, using a Key Press, Others, <Delete> event and creating
obj_rocket2.

Now we’ll create the bouncing bomb secondary weapon in a similar fashion. It behaves in
the same way as the shell except that it bounces against walls.

Creating the bouncing bomb objects:

1. Create a sprite called spr_bouncing using Bouncing.gif and Center the Origin.

2. Create a new object called obj_bouncing_parent and set its Parent to
obj_shell_parent.

3. Add a Collision event with obj_wall1 and include the Bounce action. Select precisely
and set Against to solid objects.

4. Add a similar Collision event with obj_wall2.

5. Add a Step, End Step event and include a Change Sprite action. Select spr_bouncing,
set Subimage to direction/6, and set Speed to 0.

6. Create a new object called obj_bouncing1 and give it the bouncing bomb sprite. Set its
Parent to obj_bouncing_parent.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 203

7. Add a Collision event with obj_tank2 and include a Set Variable action. Select Other
from Applies to, set Variable to damage, set Value to 10, and enable the Relative option.
Include a Create Instance action for obj_explosion_small and enable the Relative
option.

8. Include a Destroy Instance action.

9. Repeat steps 6 and 7 to create obj_bouncing2 using a Collision event with obj_tank1.

Before we add actions to make the tank objects shoot bouncing bombs, we’ll create the
final special weapon: the shield. This is a bit more complicated as it allows the player to tem-
porarily make their tank invincible. Activating the shield will set a new variable called shield
to 40, and display a shield sprite. The value of shield will be reduced by 1 in each step until it
falls below 0 and the shield is disabled again. We’ll check the value of shield each time the
tank is hit and only increase its damage when shield is less than 0.

Editing the parent tank object to support shields:

1. Create sprites called spr_shield1 and spr_shield2 using Shield1.gif and Shield2.gif
and Center their Origins.

2. Reopen the parent tank object and select the Create event. Include a Set Variable
action with Variable set to shield and Value set to 0.

3. Select the Step event and include a Set Variable action at the start of the list. Set
Variable to shield, set Value to –1, and enable the Relative option.

4. Reopen obj_shell1 and select the Collision event with obj_tank2. Include a Test Vari-
able action directly above the Set Variable that increases the damage. Select Other
from Applies to, then set Variable to shield, Value to 0, and Operation to smaller
than. Now the damage will only be increased when the tank has no shield.

5. Repeat step 4 for objects obj_shell2, obj_rocket1, obj_rocket2, obj_bouncing1, and
obj_bounding2.

6. Reopen obj_tank1 and select the Draw event. Include a Test Variable action at the
start of the action list. Set Variable to shield, Value to 0, and Operation to larger than.
Follow this with a Draw Sprite action for spr_shield1 with the Relative option
enabled.

7. Repeat step 6 for obj_tank2, this time drawing spr_shield2.

Now all that remains is to adapt the tanks so that both the bouncing bombs and the
shields can be used.

Editing tank objects to shoot bombs and use shields:

1. Reopen obj_tank1 and select the Key Press, <Ctrl> event.

2. Include a Test Variable action below the Create Instance action that creates
obj_rocket1. Set Variable to weapon, Value to 1, and Operation to equal to. Follow this
with a Create Moving action for obj_bouncing1, setting Speed to 16 and Direction to
direction, and enabling the Relative option.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS204

3. Include another Test Variable action below this, with Variable set to weapon, Value
set to 2, and Operation set to equal to. Follow this with by a Set Variable action with
Variable set to shield and Value set to 40.

4. Repeat steps 1–3 for obj_tank2, adapting the Key Press, <Delete> event and creating
obj_bouncing2.

This completes all the secondary weapons and the game should now be fully playable.
We encourage you to play it a lot with your friends, to make sure everything is working as it
should. You’ll find the current version on the CD in the file Games/Chapter10/tank3.gm6.

Views
Currently, our playing area is quite small and both players can see all of it at once. However,
we can create more interesting gameplay by giving each player a limited “window” into a
much larger playing area. This can easily be achieved in Game Maker using views. We’ll use
two views to create a split screen, in which the left half of the screen shows the area around the
first tank and the right half shows the area around the second tank. Later we use a third view
to display a little mini-map as well.

To understand the concept of views, you need to appreciate that there is a distinction
between a room and the window that provides a view of that room on the screen. Up to now,
rooms have always been the same size as the window and the window has always showed the
entire contents of the room. However, rooms can be any size you like, and views can be used
to indicate the specific area of the room that should appear in the window. We’re going to cre-
ate a room that’s twice the width of a normal room with an equal height (see Figure 10-2). The
green rectangle shows the size of a normal room, and the red and blue squares show the size
of the views we will give to each player in the room. To create these views, we will need to
specify the following information on the views tab in the room properties:

• View in room: This is an area of the room that needs to be displayed in the view. The X
and Y positions define the top-left corner of this area and W and H specify the width
and height of it.

• Port on screen: This is the position on the window where the view should be shown.
The X and Y positions define the top-left corner of this area and W and H specify the
width and height of it. If the width and height are different from the size of the view
area, then the view will be automatically scaled to fit. Game Maker will also automati-
cally adapt the size of the window so that all ports fit into it.

• Object following: Specifying an object here will make the view track that object as it
moves around the room. Hbor and Vbor specify the size of the horizontal and vertical
borders that you want to keep around the object. The view will not move until the edge
of the screen is closer than this distance from the object. Setting Hbor to half the width
of the view and Vbor to half the height of the view will therefore maintain the object in
the center. Finally, Hsp and Vsp allow you to limit the speed with which the view moves
(–1 means no limit).

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 205

Figure 10-2. We’ll create a large room, much bigger than a normal window (green rectangle), and
provide views into it for each of the tanks (red and blue squares).

You can specify up to eight different views, but you’ll probably only need one or two. Let’s
adapt our game’s room to use two views.

Editing the room resource to provide two views:

1. Reopen the main room and switch to the settings tab.

2. Set both the Width and Height of the room to 1280, to create a much larger room.

3. Switch to the objects tab and add wall instances to incorporate the extra playing area.
Start the tanks close to two opposite corners and add six pickup instances. Also don’t
forget that the room needs exactly one instance of the controller object.

4. Switch to the views tab and select the Enable the use of Views option. This activates
the use of views in this room.

5. Make sure that View 0 is selected in the list and enable the Visible when room starts
option. We will use this view for player one.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS206

6. Under View in room set X to 0, Y to 0, W to 400, and H to 480. The X and Y positions
of the views don’t really matter in this case as we will make them follow the tanks.
Nonetheless, notice that lines appear in the room to indicate the size and position
of the view.

7. Under Port on screen set X to 0, Y to 0, W to 400, and H to 480. This port will show
player one’s view on the left side of the screen.

8. Under Object following select obj_tank1, then set Hbor to 200 and Vbor to 240. The
form should now look like Figure 10-3.

9. Now select View 1 in the list and enable the Visible when room starts option. We will
use this view for player two.

10. Under View in room set X to 0, Y to 0, W to 400, and H to 480.

11. Under Port on screen set X to 420, Y to 0, W to 400, and H to 480. This places the second
view to the right of the first view with a little space between them.

12. Under Object following select obj_tank2, and set Hbor to 200 and Vbor to 240.

Figure 10-3. This is how the form should look when the values for View 0 have been set.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 207

And that’s it. Easy, wasn’t it? Run the game and you should be able to play in the new split-
screen mode.

■Tip The empty region between the views defaults to the color black. You can change this in the Global
Game Settings on the graphics tab under Color outside the room region.

Have you noticed something strange? The score is displayed at a fixed position in the
room so you can only see it if you drive up to it! To fix this we need to draw it at a changing
position relative to the player’s views. The score for player one needs to appear in the top-
right corner of View 0 and the score for player two needs to appear in the top-left corner of
View 1. Game Maker provides variables that we can use to obtain the positions of views.
view_xview[0] and view_yview[0] indicate the current x- and y-positions of View 0 while
view_xview[1] and view_yview[1] indicate the x- and y-positions of View 1.

Unfortunately, this does not solve the problem completely. To explain why, you’ll need to
understand what Game Maker is doing when you use views. For each view, Game Maker draws
the whole room, including all the backgrounds, objects, and Draw events; clips the visible
area to the size of the view; and then copies it to the required position on the window. This
means the Draw event of the controller object (that draws the score) is called twice, once
for drawing each of the views. So, to display the score in the correct place we need to know
which view is currently being drawn. Game Maker allows us to check this using the variable
view_current, which will be 0 for View 0 and 1 for View 1. Therefore, we can test the value of
this variable in the Draw event of the controller object and draw the score of the appropriate
tank relative to the position of the current view.

Editing the controller object to draw the score relative to the view position:

1. Reopen the controller object and select the Draw event.

2. Include a Test Variable action before the Draw Variable action that draws the score for
player one. Set Variable to view_current, Value to 0, and Operation to equal to.

3. Edit the Draw Variable action that draws player one’s score. Change X to
view_xview[0]+380 and Y to view_yview[0]+10.

4. Include a Test Variable action before the Draw Variable action that draws the score for
player two. Set Variable to view_current, Value to 1, and Operation to equal to.

5. Edit the Draw Variable action for player two. Change X to view_xview[1]+20 and Y to
view_yview[1]+10. The action list should now look like Figure 10-4.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS208

Figure 10-4. These actions draw the scores correctly for each view.

Run the game to check that the score is displayed correctly.
We’ll now add a little mini-map to help the player see where they are. This mini-map

shows the entire room, so that both players can see the location of their opponents and the
pickups in the room. Creating a mini-map is very simple using views, as we can create an
additional view that includes the whole room but scales it down to a small port on the screen.

Adding a view to create a mini-map:

1. Reopen the main room and switch to the views tab.

2. Select View 2 in the list and enable the Visible when room starts option.

3. Under View in room set X to 0, Y to 0, W to 1280, and H to 1280 (the entire room).

4. Under Port on screen set X to 350, Y to 355, W to 120, and H to 120. No object needs to
be followed.

And that finishes the game for this chapter. Run it and check that it all works. There are a
few final improvements you might want to make. You should add some Game Information
and you might want to change some of the Global Game Settings. For example, you might not
want to display the cursor but might want to start in full-screen mode or add a loading image
of your own for the game.

■Tip To improve the mini-map and make it more “iconic,” you could make the different objects draw
something different when the variable view_current is equal to 2. For example, the pickup object could
simply display a red disk and the walls could draw black squares.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 209

Congratulations
That’s another one complete! We hope you enjoyed making this game and playing it with your
friends. The final version can be found on the CD in the file Games/Chapter10/tank4.gm6. You
encountered some important new features of Game Maker in this chapter, including views,
which can be used to create all sorts of different games.

There are many ways in which you could make Tank War more interesting. You could cre-
ate different arenas for the players to compete in. Some could be wide and open while others
could have close passageways. You could also add other types of walls, perhaps stopping shells
but not the tanks, or even the other way around. You could create muddy areas that reduce
your speed, or slippery areas that make it difficult to steer your tank. Of course, you can also
add other types of secondary weapons, such as guns that fire sideways or in many different
directions. You could even drop mines or create holes in the ground. You could also add a
front-end to the game, displaying the title graphic that is supplied. You’re the designer and it’s
up to you.

We’ll be staying with our Tank War example in the next chapter as we explore the game
design issues involved in creating multiplayer games. We’ve got some different versions of the
game for you to play and you’ll be balancing tanks, so you’d better go and find some king-
sized scales!

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS210

